2000 #5

(a)
$$y^2 + 2xy \frac{dy}{dx} - 3x^2y - x^3 \frac{dy}{dx} = 0$$

 $\frac{dy}{dx} (2xy - x^3) = 3x^2y - y^2$
 $\frac{dy}{dx} = \frac{3x^2y - y^2}{2xy - x^3}$

(b) When
$$x = 1$$
, $y^2 - y = 6$
 $y^2 - y - 6 = 0$
 $(y - 3)(y + 2) = 0$
 $y = 3$, $y = -2$

At
$$(1,3)$$
, $\frac{dy}{dx} = \frac{9-9}{6-1} = 0$

Tangent line equation is y = 3

At
$$(1,-2)$$
, $\frac{dy}{dx} = \frac{-6-4}{-4-1} = \frac{-10}{-5} = 2$

Tangent line equation is y + 2 = 2(x - 1)

(c) Tangent line is vertical when $2xy - x^3 = 0$ $x\left(2y - x^2\right) = 0 \text{ gives } x = 0 \text{ or } y = \frac{1}{2}x^2$

There is no point on the curve with x-coordinate 0.

When
$$y = \frac{1}{2}x^2$$
, $\frac{1}{4}x^5 - \frac{1}{2}x^5 = 6$
 $-\frac{1}{4}x^5 = 6$
 $x = \sqrt[5]{-24}$

$$2 \begin{cases} 1 : \text{ implicit differentiation} \\ 1 : \text{ verifies expression for } \frac{dy}{dx} \end{cases}$$

$$4 \begin{cases} 1: & y^2 - y = 6 \\ 1: & \text{solves for } y \\ 2: & \text{tangent lines} \end{cases}$$

Note: 0/4 if not solving an equation of the form $y^2 - y = k$

$$\begin{array}{c} 1: \text{ sets denominator of } \frac{dy}{dx} \text{ equal to } 0 \\ 1: \text{ substitutes } y = \frac{1}{2}x^2 \text{ or } x = \pm \sqrt{2y} \\ \text{ into the equation for the curve} \\ 1: \text{ solves for } x\text{-coordinate} \end{array}$$

(a)
$$2yy' = y + xy'$$
$$(2y - x)y' = y$$
$$y' = \frac{y}{2y - x}$$

(b)
$$\frac{y}{2y-x} = \frac{1}{2}$$
$$2y = 2y - x$$
$$x = 0$$
$$y = \pm \sqrt{2}$$
$$(0, \sqrt{2}), (0, -\sqrt{2})$$

(c)
$$\frac{y}{2y-x} = 0$$

 $y = 0$
The curve has no horizontal tangent since $0^2 \neq 2 + x \cdot 0$ for any x .

(d) When
$$y = 3$$
, $3^2 = 2 + 3x$ so $x = \frac{7}{3}$.

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = \frac{y}{2y - x} \cdot \frac{dx}{dt}$$
At $t = 5$, $6 = \frac{3}{6 - \frac{7}{3}} \cdot \frac{dx}{dt} = \frac{9}{11} \cdot \frac{dx}{dt}$

$$\frac{dx}{dt}\Big|_{t=5} = \frac{22}{3}$$

2:
$$\begin{cases} 1 : \text{ implicit differentiation} \\ 1 : \text{ solves for } y' \end{cases}$$

$$2: \begin{cases} 1: \frac{y}{2y-x} = \frac{1}{2} \\ 1: \text{answer} \end{cases}$$

$$2: \begin{cases} 1: y = 0 \\ 1: explanation \end{cases}$$

3:
$$\begin{cases} 1 : \text{ solves for } x \\ 1 : \text{ chain rule} \\ 1 : \text{ answer} \end{cases}$$